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Abstract 

A heat pipe is a self-contained structure which achieves very 

high thermal conductance by means of two-phase fluid flow with 

capillary circulation. A quantitative engineering theory for the 

design and performance analysis of heat pipes is given. 
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1. Introduction 

The "Grover Heat Pipe" is a self-contained engineering structure 

vhich exhibits a thermal conductance greatly in excess of that which 

could be obtained by the use of a homogeneous piece of any known 

metal. This property is achieved within the containing envelope 

by the evaporation of a liquid, transport of the vapor to another 

part of the container, condensation of the vapor and return of the 

condensate to the evaporator through a wick of suitable capillary 

structure. The quantitative engineering theory for the design and 

performance analysis of heat pipes, alluded to but not elaborated 

in the original description of these devices, is supplied herein. 

There are obviously many practical uses for a structure of 

extraordinarily large thermal conductance. The heat pipe principle 

is indeed applicable over a very wide range of sizes, shapes, 

temperatures and materials. Unlike solid heat conductors, however, 

heat pipes cannot be characterized by a single property (an "equivalent 

thermal conductivity", say), since the behavior and limitations of a 

heat pipe are largely integral properties of the device as a whole. 

Furthermore, even if the size, shape, temperature and materials of a 

heat pipe are specified, the mass, vapor volume fraction, thermal 

conductance and maximum heat flux are individually (through not 

independently) under the control of the designer. The particular 

application will determine which allowed combination of these properties 

is most desirable. 
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At the present time, certain quantitative features of heat pipe 

behavior have not in fact been verified experimentally, though they 

can be predicted with some confidence. A few properties cannot yet 

even be treated with any conviction. 

It is impractical to furnish a sufficient number of specific 

calculations to be generally useful. This report is intended simply 

to offer some initial orientation . . the quantitative principles 

of heat pipes, and to serve as a stimulus for further experimentation, 

applications, and improvement of the theory. 

2. General heat pipe structure 

The advantages of heat pipes are best realized when they are 

long and thin, that is, take the form of long cylinders or extended 

thin planar structures. For definiteness the discussion here will 

be confined to right circular cylinders of large length-to-diameter 

ratio. The course of the analysis for other shapes will be evident, 

though not always straightforward in detail. As shown in Fig. 1, 

such a heat pipe consists of a containing tube of length I with outer 

radius r , an annular capillary structure saturated with a wetting 

liouid, with outer radius r , and a vapor space of radius r . 

Since heat is added to and removed from the heat pipe through 

the container wall by ordinary thermal conduction, this should be 

as thin as other considerations permit, in order to minimize radial 

temperature differences. The container v.'all must of course sustain 



the difference between the internal and the ambient pressure. Heat 

pipes become effective at internal vapor pressures as low as a 

hundreth of an atmosphere, and improve with increasing pressure. It 

will ordinarily be possible nearly to match the ambient pressure by 

choice of a working fluid with an appropriate vapor pressure at the 

desired operating temperature. The question of the long-term 

compatibility of the container with the working fluid might determine 

its thickness, or the container might even be a structural element 

with other functions in the larger device of which the heat pipe is 

a part. 

The details of the wick admit of wide variation. It need not 

be disposed against the inside surface of the container as shown, 

though this will ordinarily be the best place for it for several 

reasons. Since evaporation and condensation take place at the vapor- 

liquid interface, this disposition of the wick allows the necessary 

radial heat transfer to occur through the medium of highest thermal 

conductance and thus minimizes radial temperature differences. This 

also makes the hydraulic diameter of the vapor space as large as 

possible which minimizes axled pressure gradients in the flowing 

vapor. The wick may be a woven cloth, roving, felt, sinter, dtc, 

2 
or even aiaqply alots or grgoves in the container wall.  The capillary 

structure will be characterized by its mean pore radius, permeability 

and liouid volume fraction. It is desirable but possibly not essential 

that the heat pipe be pelf-priming; that is, if the reouisite amount 
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of liouid is placed anywhere in the container it spontaneously 

saturates the entire wick. This is accomplished by having sufficiently 

small capillary pore size throughout the wick. 

The working fluid must wet the wick material; that is, the 

contact angle (the angle formed by a wedge of liquid in equilibrium 

contact with the solid substrate) must be less than TT/2. While not 

essential, it is desirable that the fluid also wet the container 

wall as this improves the heat transfer. There is little penalty 

for a modest excess of liquid over the amount required to saturate 

the wick. A deficiency on the other hand can be expected to reduce 

the maximum heat transport by reducing the effective wick volume 

in the evaporator section of the heat pipe. 

3. Static condition 

Suppose, first, that there is no heat addition or removal and 

that the pipe is at enuilibrium with its length, z, at an angle 0 

to a gravitational field of acceleration, g. The pressure dis- 

tribution in the liouid phase, p (z), obeys the usual hydrostatic 

law for an incompressible fluid: 
fa Attached 

p/z) = P/O) + p^g sin 4 *"**  Sh~» (l) 

where p. is the density of the liquid. The pressure in the vapor 
If * 

phase p (z), assumed an ideal gas, has a Boltzmann distribution in 

the gravitational field, but the variation of pressure is entirely 

negligible and we may take the pressure to be constant. The inter- 
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face 'between the liquid in the capillary structure and the adjacent 

vapor must assume a local radius of curvature, r(2), so that surface 

tension, y  , supports the difference in pressirre between the liquid 

and the vapor. Thus 

Pv(*) - P/*) = f^y (2) 

Now the vapor pressure of the liquid depends not only on the 

temperature T, but also sanewhat on the radius of curvature of the 

liquid-vapor interface, r. This dependence of the vapor pressure 

p = p (T,r), is given by ^M 
" P/Tr 

p(T,r) = p(T,»)e  '' 

where M is the molecular weight of the vapor and R is the universal 

gas constant. The quantity 2^4/pRT typically has order of magnitude 

10" cm or less, and since the capillary pore sizes of practical 
.1+ 

interest exceed 10  cm, we may neglect this dependence and take 

P = p(T) only. In the present equilibrium case the vapor pressure 

of the liouid must be eoual to the pressure in the adjacent vapor, 

P(T) = Pv. 

In a capillary structure of minimum pore radius r , containing 

a liquid for which the contact angle is 9 , the smallest radius of 

curvature that the meniscus, can achieve is r secQ . The liquid-vapor 

interface under sane circumstances nay be at the surface of the 

capillary structure or even outside it, so the maximum radius of 

curvature may be at least as large as the radius of the vapor space. 
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If enough liquid is present to form a pool in which the gravitational 

force dominates surface tension, then the radius of curvature of the 

interface may he essentially infinite. Thus r must lie in the range: 

»i^r^r sec9. Using these limiting values in (2) and cooibining with 
c 

(l) yields for the maximum height of capillary rise, z  sin0 , the 

well-known result 

2  sin0 = 2*cose (3) 
max  w  p^rc 

In order to work properly the length of the heat pipe should not 

exceed this z 
max 

k,    Start-up 

Ihe quantitative details of the start-up transient are of minor 

interest. We need describe only qualitatively how it is accomplished 

quite automatically. 

Beginning with the equilibrium condition for which r(z)>r secQ, 

we consider then what happens when heat is added to the pipe in the 

evaporator section, m g^lf"^ The temperature and consequently the 

vapor pressure of the liquid rises in the evaporator and falls in the 

condenser. This gives rise to a pressure difference in the vapor 

which drives it from the evaporator to the condenser. The driving 
• 

pressure difference in the vapor is somewhat less than the difference 

of the liquid vapor pressures, since, in order to maintain continued 
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evaporation the vapor pressure of the liquid in the evaporator must 

exceed the pressure in the adjacent vapor. Similarly, in order to 

continue condensing, the pressure in the condenser vapor must exceed 

the vapor pressure of the adjacent liquid. As a result of evaporation 

the liquid-vapor interface in the evaporator recedes smewhat into the 

capillary structure ar\ the radius of curvature of the meniscus 

consequently decreases there. Condensation of vapor increases the 

radius of curvature of the meniscus in the condenser, if it is not 

already essentially infinite. Thus, according to (2), the pressure 

distribution in the liquid changes in the direction which drives 

liquid from the condenser to the evaporator. The resulting distribution 

of pressures is shown in Fig. 2. 

Die starting transient is scmewhat more complex when the material 

which will become the working fluid is below its melting point initially. 

As heat is added to the evaporator section, the material there is 

brought to its melting temperature and above, and vapor is formed 

which moves down the vapor duct to the condenser section. Material 

Jdjacent to the evaporator section is heated to the melting point 

partly by the condensation of vapor on its surface and partly by axial 

conduction of heat along the container wall and the wick. The melt 

zone thus moves out into the condenser section. In order for the 

startup to fail, liquid must continually be depleted by evaporation 

faster than it becomes available by melting, until all liquid formed 
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is deposited as solid in the condenser section. In a large number 

of tests of heat pipes of various kinds, successful startup appears 

to be a fairly general rule as long as there are no unexpected 

malformations of the wick. 

5. Steady-state heat pipe regime 

We consider now the quantitative dynamics of the long cylindrical 

heat pipe in steady-state operation. We shall derive equations which 

determine the distribution of energy flow, material flow, temperature 

and pressure within a heat pipe when it is placed in a specified 

external thermal environment. The basic working relations are obtained 

from the general equations of conservation of mass, momentum and 

energy by taking averages over the radial cross section of the pipe 

and making simplifying assumptions. 

The conservation of mass of a fluid of density p(z,r) in steady 

flow with velocity v(z,r) is expressed by 

7.pv = 0 (1+) 

Since there is no flow normal to the outer boundaries of the liquid 

region, the velocity ccmponents v and v satisfy the boundary 

conditions 

vz(0,r) = v2U,r) = vr(z,rw) = 0 (5) 

The total axial flow of vapor, m , and of liquid, m , at axial 

position z are respectively 
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r x 
\iz)  = J V p(z,r) vz (z,r) 2nrcir; m^z) = J^

W p(z,r)v2(z,r)2Ttrdr (6) 

Applying Gauss' theorem to (U) in a cylindrical region between 

0 and z and inside r , and using (5) and (6), yields 

mv(z) + m^z) = 0 (7) 

The momentum equation for steady incompressible flow is 

7P = p*? + 11^.Vv- pv.Vv (8) 

where p is the pressure and T] the coefficient of viscosity. The 

implications of this equation for the liquid and vapor flows are 

quite different. 

As an approximation valid for the flow of liquid through the 

porous structure of the wick we now obtain a version of Darcy's law. 

Consider the average of (8) over a small area with dimensions small 

compared to the thickness of the wick but large ccnpared to the 

average radius of a capillary pore, r . Since <v> , the area average 

v, includes regions occupied by solid wick structure, the average 

flow velocity within the pores is (v) /e, where e is the fraction 

of wick volume occupied by liquid. Since the fluid velocity is 

of order ^v ) /e within a capillary passage and vanishes on the pore 

surface, then in order of magnitude, ^P^.v*)* p <v) /er and 5Ce Atttiche. 

^Tiy.Tv) ^ -"nXv^/er . The ratio of magnitudes of these two 

terms is Just the Reynold's number for the average flow in a pore, 
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p ,vr/'n , which will be snail cocrpared to unity in all cases of 
Ju        As 

present interest. The final inertial teim in (8) is therefore 

neglected and we have 

^A= P-S-^V^V^c (9) 

vrhere b is a dimensionless constant depending on the detailed 

geometry of the capillary structure. For non-connected parallel 

cylindrical pores b ~ = 8. For realistic capillary structures, 

with tortuous and interconnected pores, b ~ 10-20. 

The average radial and axial pressure gradients will be inversely 

proportional to the flow areas in the radial and axial directions 

2 
respectively. For long thin pipes, that is as long as r jj»r  , 

the radial pressure gradient will be negligible, and we nay assume 

that both the flow velocity and pressure in the liquid depend only 

on z. Thus specializing (9) to the axial direction and using the 

definition of the total liquid mass flow, (6), we have 

a!i= p/ sin 0 .  y* 3' -2 (10) 
1    C C\ 1 

TiCr - r )p .er x w  v/rX c 

The dyramics of the vapor flow is decidedly more canplex, partly 
* 

because in general an equation like (lO) relating the local pressure 

gradient with the local mass flow does not even exist, and partly 

because of the inertial term in (8) Is often not negligible in cases 
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of interest. The vapor flow in the evaporator and condenser of a heat 

pipe is dynamically identical to pipe flow with injection or suction 

through a porous wall. Ulis problem has been studied by Yuan and 

FinkelsteinJ for cylindrical pipes, and by Knight and Mclnteer for 

flow between plane parallel walls. We summarize and quote the partial 

results of these authors. 

Both analyses assume incompressible laminar flow and uniforai 

injection or suction. Several regimes must be distinguished, depending 

on the magnitude of a Reynolds number, R , based on the radial flow 

velocity at the channel wall, v = v (z,r ), the channel radius, r , 

the vapor density, p , and viscosity, Tl : 

p r v      ,     dm 
R _  v T _   1      v (n) Rr -   T^   " STTT^     dz K1X) 

Note that R is positive for evaporation and negative for condensation. 

For all values of R solutions are found for which the axial velocity 

profiles are syrmetric about the channel axis, with the profiles at 

different axial stations differing only by a velocity scale factor 

proportional to the distance from the axial origin of the flow. 

For |R |<1, viscous effects dominate and the axial velocity profile 

is close to the usual parabolic shape for Poiseuille flow. The 

pressure decreases in the direction of flow, with a gradient larger 

than that of Poiseuille flow in the case of evaporation, and smaller 

if vapor is condensing. In this regime the flow properties can 
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be calculated by a straightfonmrd perturbation expansion in powers 

of the Reynolds number. The resulting pressure gradient is given 

3 
approximately by 

%=-^r(-U-#^...)a3) 
KV V 

Ihis expression is derived on the assumption that R as defined in 

(ll) is a constant, independent of z. This will often be the case 

in practical applications of heat pipes. 

When |.R | is large the evaporation and condensation cases 

becomes qualitatively different. Knight and Mclnteer shot/ this in 

theory for flow between plane parallel walls. Wageman and Guevara5 

have verified the following description experimentally for cylindrical 

pipe flow. For high evaporation rates, R » 1. The  radial dependence 

of the velocity is not parabolic but is proportional to cos ^ (—T") • 
^  v 

The pressure decreases in the direction of flow. The flow properties 

can be calculated by a perturbation expansion in powers of l/K . 

With high condensation rates on the other hand, the flow is of 

boundary layer type. The axial velocity is constant across most of 

the channel, with the transition to zero velocity occurring in a thin 

layer at the wall, The pressure increases in the direction of fluid 

motion as a consequence of partial dynamic recovery in the decelerating 

flow. In this regime only the limiting behavior can at present be 

described analytically, as perturbation expansions cannot be made 
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self-consistently. In either limit,  JR !-►» , the pressure gradient 

is given hy 

dPV       *%     ^ (^s __. = .  j—  -_ (13) 

where the difference in the flows enters only in the numerical 

coefficients: for evaporation, s = 1; for condensation, s = h/v   . 

As before, (13) is strictly correct only for constant R . 

Nothing appears to be known about the stability of these flows, 

so that nothing definite can be said about the onset of turbulence. 

The transition criterion as well as the properties of the fully 

developed turbulent flow will depend also on a Reynolds number, R , 

based on the mean axial velocity v, z 

p r v     m 
p _ v v 2  _   v fiM 

z 

We might, however, use (12) or (13), as appropriate, without regard 

to the problem of turbulence, for lack of better information, except 

for one case of practical interest where we may proceed on a sounder 

basis. If the evaporator and condenser of a heat pipe are connected 

by a long insulated section, then, since the returning condensate 

will be heated by the outgoing vapor, there will be a small but 

ordinarily negligible net condensation along the insulated part so 

that R "O. If R < 1000, then the expression (12) for laminar flow 

is appropriate. If, however, R > 1000, and the length exceeds, say 
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50 r 5 then we should expect fully developed turbulent flow. In this 
v 

case we should use instead of (12), the empirical Blasius law 

£ = . ^ R ^ (15) dz       3    s o r rv v 

To canplete the discussion of the flow dynamics we must state 

the connections between the vapor and liquid pressures and the 

vapor and liquid mass flows. As in the equilibrium case the inter- 

face meniscus assumes a radius of curvature satisfying (2), except 

that in the steady state p also depends on z. The two mass 

flows are coupled with the liquid temperature at the interface, 

T(2,r ), which in turn determines the vapor pressure of the liquid, 
V dm. 

p. The local condensation rate  —r—  is given by the gas kinetic 

fonnula 

dm^   d^  "rv(Pv-P) 
dz "' d2 =>/ü7i7ir 

The  numerical factor or **1 includes both the probability of condensation 

of an impinging vapor molecule, and the "roughness" of the meniscus 

interface fomed on the capillary structure. Equation (l6) also 

applies for surface evaporation, but not for boiling evaporation, 

i.e., the formation of vapor bubbles within the capillary structure. 

We now discuss the transport of energy. If q is the energy flux, 

then in the steady state and in the absence of sources, conservation 
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of energy requires 

V.t = 0 (17) 

The convective and conductive contributions to the steady state 

heat flux are given by 

q" = hpv - kTT (18) 

where h is the specific enthalpy of the fluid and k the thermal 

conductivity of the local medium.  Net heat transport due to 

radiation ordinarily makes a negligible contribution in a heat pipe 

and it is therefore neglected. The total axial heat transport, 

Q(z), is r 
p 

Q(z) = f  q (z,r)2T1rär (19) 
''o z 

The desired approoclmation to (19) follows from a definition of the 

heat pipe regime. The derice is operating in the heat pipe regime 

when, though the heat flow may be very large, the axial and radial 

temperature gradients throughout are very small, excepting only the 

radial temperature gradient in the container wall and wick. Using 

the axial ccoponent of (l8) in (19), assuming the heat pipe regime 

prevails, so that axial conduction terms are small conrpared to 

convective teras, we have 

Q(z) = J0
V VvV22Tträr + J/ V/z2^ (20) 

Die specific enthalpies of vapor and liquid depend on temperature 
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and are related by 

hv(T) = h^(T) + L(T) (21) 

where L(T) is the heat of vaporization at temperature T. The vapor 

region is at nearly uniform temperature so h can be taken out of 

the first integral of (20). If we define a mean specific enthalpy 

of liquid, h. , by 

r /r 
h,= rW   h«P»v, 2Tirdr/rW   P/,v2Tirdr (22) 

then using (6),  (?),  (21) and (22), the expression for Q(z) becomes 

Q(Z) = ^[1+ (h£-h£)/L] (23) 

Here h. is the liquid specific enthalpy at the temperature of the 

vapor-liquid interface. Since .|(h.-h.)/Ll< AT/(L/c ) , where AT 

is the radial temperature difference across the wick and c is the 

specific heat of the liquid, and for liquids L/c -vlO^K, the bracketed 

quantity will differ negligibly from unity in any reasonable case. 

Thus finally we have the somewhat obvious conclusion that the axial 

transport of energy is essentially entirely accomplished by the 

vapor convection of latent heat of condensation: 

Q(z) = L mv{z) {2k) 

The heat pipe is coupled to the external environment through the 
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net rate of heat addition per unit length of pipe, H = H (z,T ,Q). 
Jbr 

As indicated, H may depend on: z explicitly, vrhen heat is added 

with a known distribution, as might be the case with electron 

bcobaräinent or induction heating of the pipe surface; T = T(z,r ), 

the tenrperature of the external surface of the pipe, as in the 

case of radiation or conduction to a reservoir of specified 

temperature; and Q - Q(z), as in the case of heating or cooling 

using parallel forced convection by an external fluid. In any 

case a prescription of the environment determines H as a known 

function of its arguments. Applying Gauss' theorem to (l?) in 

a cylinder of radius r and length dz, and using (19)) gives 

fätei = - Zrrr^  (z,rp) = H(z,Tp,Q) (25) 

The radial heat flux through the container wall and wick to 

the vapor-liquid interface in the heat pipe regime is found by 

applying GauBS* theorem to (l?) in an annulus, r ^r>r , with 

thickness dz. Using (l8) and (25), one may obtain the following 

relation: 

:'Z^S*   2*r k   2&&1        = 2^ k   MSoli     [1 + (h -hj/l,] 
■■■ Zh*l        v w     dr r p p     dr       r  

L ^ I   l"    s (26) 

v p 
The bracketed quantity again" differs negligibly from unity, implying 

that convection contributes little to the radial transport of energy 

through the wick. The temperature at the outside of the container 

and the vapor-liquid interface are thus related by the standard result 
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for radial theimal conduction in a composite cylinder: 

Tp = Tv + H/K (27) 

where 

T = T(z.r )  ;  T = T(z,r ) 

r    ,     r 1 1   t1      ^_E4.i_«T,Ji^ 
r 
v 

The equations (2), (10), (16), {2k),  (25), (2?) and one of 

(12), (13) or (15) as appropriate, provide a basis for the quantitative 

calculation of heat pipe properties, 

6. Solution of the steady-state equations 

Rather accurate approximate solutions of the equations of the 

preceding section can be obtained fairly simply. In the heat pipe 

regime the temperature is nearly uniform throughout the vhde vapor 

space and the distribution of axial heat and mass flows differ little 

from what they would be if the vapor temperature was exactly a 

constant, T0 . If (2?) is solved for T , we nay express H in (25) 

as a function of z, T and Q, 

f = H(z,Tv,(i) (28) 

The heat flows through the two ends of the pipe either are 
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negligible or at worst may be known functions of the local vapor 

temperature, which we denote by F0(T ) and P (T ) respectively. The 

effective average temperature, T0 , and its associated axial heat 

flux distribution, QQ(Z) , are then obtained as the solution of 

d^ 
~2 = H(2,T0,^) 

(29) 

^(0) = F0(T0) ; QQU) = FA{T0) 

Since this is a two-point boundary value problem on a first order 

differential equation it can in general only be satisfied for 

particular values of T0. In a physically well defined problem 

H(z, T0 O will depend explicitly on T0, and the value of T0 

satisfying (29) will be unique. 

With this good approximation to the heat flux we may obtain the 

vapor and linuid mass flows fron (2^) and (?) 

1^(2) = - m^z) = ^ (z)/L(T0) (30) 

The vapor mass flow in turn detsrmines the distribution of pressure 

in the vapor, to within a constant, by integration of (12), (13) or 

(15) as appropriate. Using, m(z) and p (z) in (16) then detenaines 

the vapor pressure of the liquid to within an additive constant. 

Consistent with the accuracy of the calculation, this constant may 

be taken as p(T0). Since the vapor pressure is a known function 
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of the liquid surface temperature, this determines T (z). The self- 

consistency of the approximate calculation is verified if the total 

variation of T (z), found in this way, is smn.ll compared to TQ. 

Finally, the liquid mass flow determines the axial distribution of 

pressure in the liquid by integration of (lO). Throughout the fore- 

going all the temperature dependent properties, with the exception 

of the vapor pressure, are sufficiently slowly varying that they may 

be taken as constants evaluated at TQ. 

We now obtain the total pressure and temperature variations 

along a heat pipe for a particular, but rather commonly met case; 

constant heat addition along the evaporator, and constant heat 

removal along the condenser. Thus 

r 

QQU) = L ^(z) = ^ (31) 

where I   is the length of the evaporator and 0 is the total heat 

input to the evaporator. Integrating (12) and (13)» neglecting the 

2 
tenn in R  in the former, and assuming p is constant in both, gives 
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r 

APV = PVU)-PV(O) =<( 

Vw 

—^ TTD r L Kv v 

8p A2 

From (l6) one obtains 

; sr«i 

; Rr» 1 

2TM 

AP = p(Tv(i)) - p(Tv(0)) = AP,. - r^TF^F 

(32) 

(33) 

It is a requirement for the heat pipe regime that both Ap and Ap 

be significantly smaller in magnitude than p(T0). For the small 

pressure differences occurring in the heat pipe regime the Qapeyron- 

Clausius equation may be used to calculate the temperature difference: 

RT, 

ATV = TVU> * V
0) = ML pv.@ ̂  

W 

The liquid pressure differences, found by integrating (lO), is 

jV 

b\v 
*pje = p/£) " p/0) ' *fsin0 + 772—2-T 2r~        <35> 

2TT(rw ■ r v)p£ercL 

As an illustration of the magnitudes of pressure and temperature 

drops typically encountered, .we cite an experimental horizontal liouid 

sodium heat pipe which was reported in the original description of 

these devices.  The relevant specifications are given in the left 
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column and various derived properties in the right: 

0   = 500 watts w =0.1 gra/sec 

T   = 9200K P(T0) = 50 mm Hg 

X   = 90 cm ^v = -0.2 mm Hg 

£e = 13 cm AP = -0.5 mm Hg 

r   = .6^ cm 
V Ap;. 

^   2 mm Hg 

r   = .80 cm w 

r   = .012 cm c 

AT 
V =  -0.7 K^0 Attach« 

The main features of a ;rorking heat pipe are evident here: The 

transport of considerable heat is accomplished by the circulation 

of a small amount of vrorking fluid; this circulation requires but 

small pressure differences; and the acccotpanying temperature 

difference is so small that its precise magnitude is not of importance 

in practical applications. 

7. Maximum heat flux 

While the thermal conductance of a heat pipe is very large 

there are, however, limitations on the magnitudes of both the total 

and local energy fluxes. 

The total axial heat trwicport may increase only if the force 

of capillary origin can sustain the required circulation of fluid. 

As previously noted, the luaxlmum difference in pressure between vapor 

and adjacent liquid that can be supported by surface tension in the 
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capillary structure is {2y  cos Q^c .    It is therefore necessary that 

Pv(z) - P.(z) ^ 2.v cos 6   ; 0$z£i (36) 

In the general the largest pressure difference will occur at the 

beginning of the evaporator section, z = 0. If the heat pipe has been 

prepared with a fully saturated wick, the vapor-liquid interface 

meniscus will have large radius of curvature at the terminal end of 

the condenser and, therefore, p (^) ^pXx). Thus if (36) is 

satisfied at z = o, it will be satisfied for all z. 

For the particuler case of uniform heat addition and 

removal we may use (32) and (35) together with the preceding 

remarks to write down explicitly the limiting condition on the 

total axial heat flux: 

 ^ 

-N 

blW 

'■f'yri'*/^ 

(l-Vn2)^2 

> + p „gX sin 0 + „ / 2   2»   2 . K£^    *       2n(r - r )p er L 
w  v/KA c 

v—.- riii^Sp r L 

r 

^   iE£S-fiJ 

R «1 
r 

(37) 

Rr »1 

There is a further limitation on the local radial heat flux 

in the evaporator section of the heat pipe. Ihe liquid in the interior 
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of the wick here is necessarily superheated. We should therefore 

expect that the limitation will be closely connected with the 

conditions for the onset of boiling in the capillary structure and 

the quantitative properties of the subsequent evaporation and heat 

transfer. The problems here are more complex even than those 

encountered in pool boiling of liquids, for in addition to the local 

limitations of boiling heat transfer, the undoubtedly deleterious 

interaction of boiling with the overall circulation of liquid 

throughout the capillary structure will be important. There is no 

generally useful experimental information available yet on this 

problem. 

We can, however, give a conservative criterion for the 

nonoccurrence of boiling. The onset of boiling may be characterized 

by a critical bubble radius of curvature, r, , which depends on the 

nature and geometry of the interface where bubbles nucleate. If the 

difference between the pressure of the vapor in the bubble and the 

pressure in the surrounding liquid is less than Sy/r. , then the babble 

will collapse. In a nucleating bubble the pressure in the vapor 

cannot exceed p(T(z,r)), the equilibrium vapor pressure of the liquid 

at the local temperature. Furthermore, in the capillary structure 

r. cannot exceed r sec6 . Thus as long as 

p(T(2,r)) - p (z,r) ^ ^fLi_ (38) 
* c 

bubbles cannot grow beyond the critical size, and true boiling will not 
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occur. Of course, there may indeed be no boiling under more severe 

conditions than given by this criterion. 

8. Multi-ccciponent fluids 

We consider the steady-state behavior of a heat pipe in which 

a mixture of liquids rather than a single pure compound is used as 

the working fluid. Conservation of mass again requires that 

mv(z) + rn^z) = 0 (7) 

The mass of each component individually must also be conserved. 

Letting f (z) and f .(z) be the mass fractions of some designated 

ccnponent in vapor and liquid phases respectively, then 

fv(z)iv(z) + f^(z) m^z) = 0 (39) 

Using (7) to eliminate m.(z) 

[fv(z) - f/z)] mv(z) = 0 (IK)) 

This can be satisfied only if m, (z) = 0 or f (z) = f .(z). The first 

alternative implies no local refluxing. If we assume that the steady 

state is close to thermodynamic equilibrium then the second alternative 

can only be met in one of three special ways: (a) f = f =1, that 

is, only the pure component is present locally in both phases; (b) 

f = f =0, that is, the designated component is locally totally 

absent; (c) ire are dealing with the very special case of a constant 
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boiling mixture, which may in fact be regarded as constituting a new 

pure ccmponent. If none of the foregoing cases holds, then gross 

local thermodynamic non-equilibrium is implied. 

If the heat pipe is originally charged with homogeneous 

liquid mixture, then in the early transient heat transport, the 

vapor leaving the evaporator will be richer in the more volatile 

ccoponents than the returning liquid, which thus tends to concentrate 

the less volatile components in the evaporator and the more 

volatile canponents in the condenser. Now, there is an essentially 

completely fractionated steady-state distribution of components 

which is consistent with this trend, with the previously enumerated 

near-equilibrium alternatives, and with the heat pipe dynamics which 

require very small pressure gradients throughout. This steady state 

consists of a series of segments each containing a pure component which 

is refluxing as an independent heat pipe. The components are arranged 

in order of increasing volatility with the most volatile at the 

terminal end of the condenser. The temperature distribution forms 

a series of plateaus, with the plateau temperatures decreasing in 

order of increasing volatility of the local component, in such a way 

that the pressure within the vapor is nearly constant throughout the 

entire pipe. Between the segments there are short transition zones 

of rapidly varying temperature within which there is no refluxing, 

.the entire axial heat transport occurring by ordinary thermal conduction. 
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maiiüy through the container wall and wick. Along each temperature 

transition zone the stagnant two-cctnponent liquid and vapor phases 

vary in equilibrium concentrations in a way consistent with constancy 

of total vapor pressure. Since the distribution of density is not 

uniform, gravitationally induced convection, particularly of the 

vapor phase, may modify this distribution considerably. 

If the heat pipe contains some non-condensible gas of 

low solubility in the working fluid, the foregoing applies equally 

well. It has been demonstrated that in the steady state the gas is 

driven to the terminal end of the condenser where it forms a stagnant 

zone. The length of this zone is proportional to the mass of gas 

and to the mean temperature in the zone, and is inversely proportional 

to the pressure of the vapor in the refluxing section of the heat 

pipe, ühis feature might be useful. In such a heat pipe the working 

length of the condenser increases as the heat input to the evaporator 

is increased. 

9. Optimal heat pipes 

A heat pipe will ccranonly be required to transport the largest 

possible amount of heat, subject to whatever subsidiary constraints 

arise in the particular application. In this case the maximum heat 

flux criterion (36) applies, in the form 

*, - APT - ^i = 0 CD 
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If the subsidiary constraints do not involve the capillary pore size, 

r , then its optimum value may be deduced fron (kl)  alone. According 

to (10) the viscous contribution to Ap is inversely proportional 

2 
• to r . The standard extremizing procedure then yields and the result 

CLJC' 

that r should be so chosen that the viscous contribution to Ap. 

is one-half the magnitude of the capillary pressure tem, 

(2YCOS 6)/r . For example, in the case of unifoim heat addition and 

removal, Ap. is given by (35)> and the optimum choice of r is 
* c 

n& v 
2   2 

4n(r - r )p .eL v cos 6 
(^2) 

If the hydrostatic contribution to Ap. is absent, and if the 

ratio r/r is not constrained by the subsidiary conditions, then 

s''
l1Jbhe optimum value of T/T   is 2/3. Ihls follows by noting that 

If Ap Is obtained either fron (12) or (13) as appropriate, and 

the pptünal value of r is used for Ap in (hi)  then the greatest  V: c x " 

heat transport corresponds to the maximum value of r (r - r ). Under 

these transport is found to be 

^   2 _     Q TTT,. L Y cos 9 

%-< 

31 

1/2 

, 2  /     2  2 ^ ' 
krrr   L / 2p p ey cos 9 

; Rr^i 

; Rr»l (U3) 
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If, for example, a fixed total volume of wick is distributed in a 

unifonnly heated evaporator, so as to minimize the liquid viscous 

pressure drop in this section of the pipe, the cross-sectional 

area of wick should be proportional to >/z", and the pressure drop 

is 8/9 of that of the wick of constant thickness. 
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